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Abstract. The asymptotic behaviour of the multi-soliton solution for the SU( NI sigma 
model is analysed. It is shown that if the diagonal matrices A ,  and B , ~ s u ( n )  defining 
the vacuum solution are non-degenerate (their diagonal elements are all distinct), the 
multi-soliton solution is asymptotically diagonal. 

1. Introduction 

In the past many articles have been devoted to finding solutions to certain non-linear 
equations admitting Zakharov-Shabat or Lax pair representations (e.g. see Zakharov 
and Mi'khailov 1978a). These equations are characterised by interesting properties 
such as an infinity of conservation laws and soliton solutions (Chau Wang 19801. A 
soliton solution has the property of becoming asymptotically free of any interaction 
(Miura 1976). Soliton solutions can be obtained through the use of Backlund transfor- 
mations which give a non-trivial solution built upon a vacuum solution or other 
background solution (Chau Wang 1980). 

In. Ogielski er al (1980) a Backlund transformation is given for the two-dimensional 
SU( N )  principal sigma model associated with the field equations (Zakharov and 
Mi'khailov 1978b): 

A o n  + Bo, = 0 

A o n  - Bo, + [A , ,  Bo1 = 0. 

This gives the solution $ o ( h )  defined by Harnad er a1 (1984a) which satisfies the 
systzm of matrix equations: 

where 6 and 7 are the light-cone coordinates defined by 

X + t  

2 
(=-- 

An n-soliton solution can be obtained from the vacuum solution by applying a sequence 
of 'n' Backlund transformations, which gives rise to a nonlinear superposition of 
n-soliton solutions (Harnad et a1 1980a, Zakharov and Mi'khailov 1978a, Zakharov 
and Shabat 1979). The aim of this paper is to show that this nonlinearity disappears 
asymptotically, giving rise to a genuine superposition of solitons with disjoint support. 
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2. Asymptotic behaviour of the multi-soliton solution 

Following the notation of Harnad et a1 (1984a) one wishes to express explicitly the 
Backlund transformation in terms of the initial solution and the initial value parameters 
{ A , ,  m,}. The projector PI (henceforth P )  itself must be expressed in terms of these 
parameters since the Backlund transformation is effected by it. 

The sequence of solutions defined by Harnad et al (1984a) (see also Zakharov and  
Mi'khailov 1978a, Zakharov and  Shabat 1979) shows that only ( L o ( A )  has to be integrated 
explicitly, the other solutions being given by an  algebraic computation. If one supposes 
that (Lo is now known, I ) ~ ( A )  can be determined by the following computation (Harnad 
et a1 1984a): 

P =  M , ( M : M ~ ) - ' M ;  m1 E C""'1 rl = rkP (2.1) 

I L , ( A )  =X, (A) (L , (A) .  

Furthermore let d,, E C be the components of m l r  1 s s S n, 1 S t S r l .  One chooses 
the matrices A.  and Bo to represent a vacuum solution, i.e. a solution such that 
Ao= g,g-' and Bo= g,g-' commute and depend, respectively, on 5 and 9 only (Saint- 
Aubin 1982). An appropriate choice is 

A,  = i diag( a, . , . a,,) and 

Since they are constant and  commute, they can be simultaneously diagonalised by a 
constant matrix. Without loss of generality, it can be assumed that this has already 
been done. 

Bo = i diag( bl . . . b,,). 

Since A,  and Bo belong to su (n )  

a , = i  b,=O 

The integration of equation (1.1) gives 

a,, b, 5 R. 
r = ,  t = I  

(Lo( A)=diag(expi (  *+ln),..., l + A  1-A expi(%+*)). l + A  1 - A  ( 2 . 2 )  

Then (Lo(A)  is completely determined; MI may now be found, and hence P. The 
expression for MI in terms of the initial parameters and the variables 6 and 9 is 

(2.3 

where A = A , ,  1 s 1 s n, 1 s m S r , .  Let us denote the scalar product as 

(f;lJ;)= i Ah, (2.4 
/ = 1  

where 1 
components 

i, j=s r , .  From equation (2.3), the projector can be written in terms of its 

p, Y = fP0 [ (f7-1 (2.5) 
wheref,, = (f,,, . . . ,f,,,). Substituting in equation (2.5) the scalar product defined by 
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equation (2.4) gives, after rearranging the terms, 

Note that the term (f,(J,) does not appear in equation (2.6) but it is replaced by 

The projector P,“ can be expressed in terms of initial parameters using equation 

(2 .7)  

(f,mf”l”, ). 

(2.3): 

f,JV, = d,,Li,l exp(i~, ,)  exp(y , , t+P,J )  
n 

MIX)  = C r2;,d,, exp(y/rt + pUx)  
/ = I  

where the following quantities have been defined: 

(2.9a) 

(2.96) 

The soliton region is described by means of the projector on the form (2.6). This 
region is determined by the values of x and t giving a non-negligible contribution to 
the summation of the indices m and i, in equation (2.6). Of course, this region depends 
upon the different values of ygv and ,B,“ and thus of A. and Bo. 

Now to continue further it is essential to assume that A,, and Bo have been chosen 
such that there is no degeneracy, in other words a, # a,, b, # b, for any pair ( p ,  v, p # 
v). This implies 

Y,, < YpY < Y Y V  o r  Y Y Y  < Y,” < Y,, (2.10) 

and similarly for pgV. The explicit form of the projector in terms of the quantities 
(2.9a, b )  is easily found by substituting equations ( 2 . 7 )  and (2.9) into equation (2.6) 
giving: 

P,” = N,,/A 
where 

(2.11) 
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Since by hypothesis the eigenvalues of A. and Bo are distinct, it is possible by 
virtue of equation (2.10) to order the y,,. Without loss of generality the following 
choice can be assumed: 

Y I I <  Y 2 2 < ’  . ’ Ynn. (2 .12)  

Moreover, assuming that the space coordinate x is a fixed quantity, the asymptotic 
behaviour of P,” when t + +OO is sought. According to the order in which the yt t  are 
classified, the dominant term in the numerator Npy is the one in which all 4 but one 
take the value n since the terms containing just ynn d o  not contribute to the sum. Thus 
the numerator behaves like 

e x ~ [ ( r l  -2)Ynn + Y n - l . n - I +  ~ + u l t + O ( e x ~ [ ( r l - 3 ) ~ n n  +2Yn-l,n-l+ ~ p v l t )  i f p # u  

for t + +E. The same argument shows that the dominant term in the denominator is 

exp{[(rl- 1)Ynn + ~ n - ~ , , - l l t } + o ( e x ~ { [ ( r l - 2 ) Y n n  + 2 ~ n - l , n - I l } )  

for t + +E. Therefore the limiting form of P P y  is 

i f p # v  

lim PFY = lim exp - ( y n n  - y p Y ) r  = 0 for p f v (2 .13)  

where the fact that ynn is always greater than y,y has been used. This argument fails 
for p = v and thus no  conclusions can be drawn for this case. Obviously a similar 
result holds for t - +  -CC but the dominant term is y l ,  instead of ynn (if  the order (2 .12)  
is kept for the y,&). Thus the non-diagonal elements P,,, have the following behaviour: 

1 - + a i  1-+x 

lim P p y = O  i f p # v  
1-71 

for the non-degenerate matrices A. and Bo. Hence the only possible non-vanishing 
terms of the projector are the diagonal ones. Since the eigenvalues of a projector are 
0 or 1, the following result can be stated: 

lim P,, = O  or  1 where 1 < p < n. (2 .14)  

By a similar estimate the same result for fixed t and x-t  TCC is obtained, namely an  
asymptotically diagonal P. More generally, according to the equations (2 .6)  and (2 .7) ,  
one can change ( y p y ,  P P y )  -+ ( yLy ,  P L u )  which is equivalent to changing (x, t )  + (x‘, t ‘ )  
showing that a result similar to (2.14) holds asymptotically in any spacetime region 
except the soliton region. The soliton region will be the subject of the next section. 
The main conclusion of this section is: 

In the case of no degeneracy in the matrices A. and Bo, the soliton solution obtained 
by Backlund transformation for the SU( N )  principal sigma model becomes asymptoti- 
cally diagonal. 

1-7x 

3. Soliton region 

The results of the previous section do  not hold in the soliton region since 

Y W t  + Pppx + 0 Y Y J  + P ” J  + 0 ( 3 . l a )  
or  

Y , V t  + P,;s + 0 ( 3 . 1 6 )  
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in that region, implying that the term with the indices (p ,  p ) ,  (v, v )  and ( p ,  v) give a 
similar contribution in equation (2.11). If equations (3.1~2, b )  are satisfied, the diagonal 
and non-diagonal elements P,,, P,,, P,” are comparable in magnitude. A numerical 
example with degeneracy will be presented below. First let us study in more detail 
the soliton region, i.e. the consequences of equations (2.la, b ) .  Equation (2.6) can be 
rewritten as 

where A, is the minor determinant of the corresponding element f,,fuJ or (f;lJ;). It is 
easily checked that equation (3.2) can also take the form: 

with the following definitions: 

This last formula for U,” can be interpreted as being the soliton velocity, and coincides 
with the one found by Zakharov and Mikhailov (1978b) in the particular case of SU(3) 
and a projector of rank one, except for differences in sign resulting from a different 
choice of light-cone coordinates. The soliton condition (3.1 b )  can be rewritten: 

x + U,, + 0. 

The function C,(x, t )  can be introduced as follows: 

and it is assumed that for an asymptotic region they verify: 

IC11 > IC*l>. . . > V“I. 
Therefore, asymptotically equation (2.4) can be rewritten: 

(f; I f k )  = IC, IZDzk + Elk 
where 

n 

1 = 2  
E l k  = 1 1 CJ \ * ~ , d , k  and Dik d l  id1 k 

(3.6) 
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which implies that E l k < <  IC11*&, in view of equation (3.7). On the other hand, from 
equation (2.7) the quantity SFr is 

(3.9) 

Therefore if it is assumed that there are no s‘ such that 

P , Y Y S , S ,  # P S Y Y , ”  (3.10) 

then all the terms 

exp( ys,t + P s s x )  

contained in equation (3.9) vanish or becomes infinite asymptotically. The case where 
the quantity defined by equation (3.9) becomes infinite is not of interest since P,“ 
vanishes. Therefore the interesting case is when the quantity defined by equation (3.9) 
is vanishing, giving, Instead of (3.3), 

(3.11) 

for the projector in the soliton region. It is interesting to notice that if as t++w 
( t  + --CO) we obtain a soliton, as t + --CO ( t  + +CO), P,” is vanishing. The case where the 
condition equation (3.10) is satisfied is equivalent to equation (3.11) since this is, in 
fact, just as if there were no summation on .S = S‘ in equation (3.9). 

)-I  
PPy= C C - [ K E r  coshR, , (~,k:” ,~+~,~t)]  

I , m = l  r‘ ( k = l  r1 A m k  A m ,  

Let Aik denote the minor of the element D,,; the ratio of Amk to A m l  is 

(3.12) 

where the form (3.8) for the scalar product has been used. Since D is a constant 
matrix the ratio ofthe two determinants in equation (3.12) must be bounded. Therefore, 
since the projector is non-diagonal, a soliton will appear in this spacetime region. 

4. Degeneracy of the eigenvalues a, and bi in A, and Bo of the vacuum solution 

As mentioned, the above results hold because of the assumption of non-degeneracy 
for A, and Bo. A counter-example will show that the solution g may be non-diagonal 
in case of degeneracy. Let the counter-example be in SU(3): 

Ao= diag(a1, a29 a31 and Bo=diag(bi, b ~ ,  b3) 

where A,, Bo€ su(3). Let m be given by 

and consider the definition: 

y=expi(-%+%). I + A  I - A  
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For simplicity let a, = a3 and b2 = b3, from which the vacuum solution takes the form: 
-2  0 0 

O Y  
Y 0). 

M = $ o ( i ) m = (  Y Y  ; -Y). 

lim P = ( A  0 t -!I. 
The matrix M is 

- 2  - 2  

Then, assuming that a,, b, are chosen such that y +. 0 as t + +c@, 

1-+x 0 -I 2 1  

This counter-example shows explicitly the privileged role played by the non-degen- 
erate matrices A. and Bo in the asymptotic behaviour of the soliton solutions. 

5. Multi-soliton asymptotics 

The asymptotic behaviour for one soliton generated after one Backlund transformation 
from the vacuum has been obtained. It is appropriate now to study the asymptotic 
behaviour of ' 2 '  solitons generated by ' I '  Backlund transformations. The generalisation 
to the multi-soliton case is easily obtained when the behaviour of the first Backlund 
transformation is known. Here the sequence of Backlund transformations of Harnad 
et a1 1984a, c) is used, with the same notation. Schematically this sequence can be 
represented as 

(Ao, Bo, A I )  +. (AI,  BI,  A 2 1  + . . . + ( A I - , ,  B1-1, A I )  

which is obtained by the following calculation: 

A - A ,  fit = * r - l ( i o m ,  

P, = fi,( G;fi,)-%: Gt E C""' r, = rkP, 

$t ( A  ) = X, ( A  ) CL, - 1 ( A  1. 
Since, as shown in the non-degenerate case, P becomes diagonal asymptotically so 
does X,(A) and hence the solution The matrices A, and B ,  are also diagonal since 
they are defined by 

A I =  rL1,c(A = O ) + ; ' ( A  =0 )  B ,  $,, ,(A = O)&;'(A = 0 ) .  (5.1) 

Harnad et a1 (1984b) obtain the following recurrence relation between the A, and 
B, : 
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showing that A, and B, have, respectively, the same spectrum as A,-l and  and 
are therefore non-degenerate. In other words, the results (5.1)-( 5.3) together imply 
that the asymptotic conditions satisfied before the Backlund transformations are still 
valid afterwards. Therefore the proof of the asymptotic behaviour of P, holds similarly 
for Pz and so on. A question arises here for the soliton region of the first solution 
since in this region the projector is not diagonal and therefore the previous argument 
does not hold. What is the asymptotic solution in the soliton region of the first solution 
after the second Backlund transformation? This can be quickly answered by the use 
of the permutability theorem (Harnad et a1 1984a). On the other hand, the second 
soliton has, as does the first, the appearance of an isolated soliton since it is built from 
a diagonal background. Moreover the solutions obtained by performing two Backlund 
transformations with A ,  and  A 2  interchanged must be identical. The use of this property 
in the soliton region of the first solution makes possible the previous argument. In 
other words, in the region where the first solution is not diagonal, the second soliton 
is considered as being the first one since the final solution will be the same. Thus the 
following result can be stated: 

The multi-soliton solutions for the SU( N )  principal sigma model obtained from a 
non-degenerate vacuum solution after '1' Backlund transformations become diagonal 
asymptotically. 

This means that the nonlinearity disappears completely asymptotically and each 
soliton can be considered as isolated. 

Now it will be shown by a numerical example of soliton solutions that the converse 
of the previous result is false. Indeed, contrary to the non-degenerate case the 
asymptotic behaviour is completely determined only with the explicit knowledge of 
the initial parameters. A numerical calculation is appropriate for this case since the. 
asymptotic behaviour can change drastically when m is varied. Our aim is now to 
show this fact with an  example for a solution in SU(4). It is solely for numerical 
convenience that SU(4) has been chosen. After integration this leads to one or two 
terms which are negligible compared to the other(s). The choice of SU(4) allows more 
freedom in selecting the elements of the matrices Ao, Bo and m ; this freedom is very 
useful in representing the postulated phenomenon. Consider the following values for 
A. and Bo: 

Ao=idiag(-0.45, -0.75,0.6,0.6) (5.4a) 

Bo=id iag( l .2 ,0 .3 ,  -0.75, -0.75). (5.4b) 

The values of m are chosen such that the rank of the projector is two and the first 
columns of the two matrices are distinct. The two different matrices m and m' here are 

The parameter A of the Backlund transformation is 

A = t + ( J S / 2 ) i  

for both values of m. The solutions corresponding to m and m' are represented in 
figures 1 and 2, respectively. In all figures x, t E [ - 18, + 181. Only the norms of g4, = g,,, 
g,,, g,, are shown since these elements display the fact that they share the 'soliton 
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Figure 1. Norm of the elements g,,, g34 = G, g,, where g E SU(4) for a projector of rank 
2 associated with the matrix m and parameter A defined by equation (5.6) for degenerate 
matrices A,, and Bo given by equation (5.4a, b) .  ( a )  Norm of the element g,, associated 
with m, ( b )  Norm of the element g,, == associated with m, ( c )  Norm of the element g, 
associated with m. 
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Figure 2. Norm of the elements g,,, g,,  = G, g,, where g E SU(4) for a projector of rank 
2 associated with the matrix m' and parameter A defined by equation (5.6) for degenerate 
matrices A,, and B,, given by equation (5 .44  b ) .  ( a )  Norm of the element g,, associated 
with m', ( b )  Norm of the element g , , = G  associated with m', ( c )  Norm of the element 
g, associated with m'. 

energy' between them. These four elements of g have the subscripts of the non-distinct 
diagonal elements of A. and Bo. It is important to observe that even if the matrices 
A. and Bo are degenerate, the solution with m is still diagonal. However the solution 
with m' is not diagonal, even through m and m' are only slightly different. From 
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figures 1 and 2 it is clear that degeneracy is necessary but not sufficient to obtain a 
non-diagonal solution. 

In conclusion, it is clear that for such a case an explicit calculation is required to 
determine the asymptotic behaviour of the solution. 
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